APPENDIX C COPIES OF CALIBRATION CERTIFCATES

Equipment Verification Report (TSP)

Equipment Calibrated:

Type: Laser Dust monitor

Manufacturer: Met One Aerocet 831

Serial No. D12641

Equipment Ref: NA

Work Order: HK2511103

Standard Equipment:

Standard Equipment: Higher Volume Sampler (TSP)

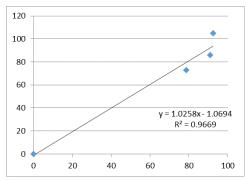
Location & Location ID: AUES office (calibration room)

Equipment Ref: HVS 018

Last Calibration Date: 12 February 2025

Equipment Verification Results:

Verification Date: 24 March 2025


Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in ug/m³ (Standard Equipment)	Concentration in ug/m³ (Calibrated Equipment)	Tolerance (ug/m³)
1hr00min	11:52 ~ 12:52	22.4	1013.4	105.1	92.4	-12.7
1hr00min	12:55 ~ 13:55	22.4	1013.4	86.1	90.9	+4.7
1hr00min	16:02 ~ 17:02	22.4	1013.4	73.0	78.5	+5.5

Linear Regression of Y or X

Slope (factor): <u>1.0258 (μg/m3)/CPM</u>

Correlation Coefficient (R) 0.9833

Date of Issue 27 March 2025

Remarks:

1. **Strong** Correlation (R>0.8)

2. Factor 1.0258 (µg/m³) /CPM should be applied for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Operator: ______ Jeff lp ____ Signature: _____ Date: _____ Date : ____27 March 2025

QC Reviewer : Ben Tam Signature : Date : 27 March 2025

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 12-Feb-25
Location ID: Calibration Room - TISCH Higher Volume Sampler (Model Next Calibration Date: 12-May-25

TE-5170) S/N:1260

CONDITIONS

Sea Level Pressure (hPa)1017.2Corrected Pressure (mm Hg)762.9Temperature (°C)18.8Temperature (K)292

CALIBRATION ORIFICE

Make->	TISCH	Qstd Slope ->	2.09671
Model->	5025A	Qstd Intercept ->	-0.01852
Calibration Date->	16-Dec-24	Expiry Date->	16-Dec-25

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.6	5.6	11.2	1.625	55	55.69	Slope = 35.3445
13	4.5	4.5	9.0	1.458	48	48.60	Intercept = -2.1779
10	3.4	3.4	6.8	1.268	42	42.52	Corr. coeff. = 0.9989
8	2.3	2.3	4.6	1.045	35	35.44	
5	1.2	1.2	2.4	0.757	24	24.30	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

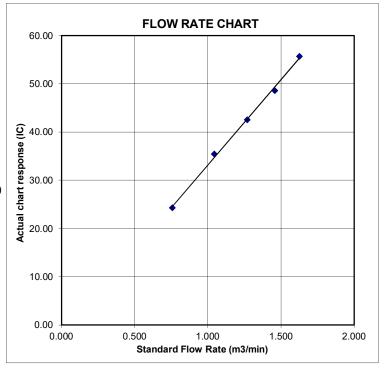
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

RECALIBRATION DUE DATE:

December 16, 2025

Certificate of Calibration

Calibration Certification Information

Cal. Date: December 16, 2024

Rootsmeter S/N: 438320

Ta: 293 **Pa:** 749.0

°K mm Hg

Operator: Jim Tisch
Calibration Model #:

TE-5025A

Calibrator S/N: 4064

Vol. Init Run (m3)		Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4600	3.2	2.00
2	3	4	1	1.0300	6.4	4.00
3	5	6	1	0.9220	8.0	5.00
4	7	8	1	0.8770	8.8	5.50
5	9	10	1	0.7250	12.8	8.00

	Data Tabulation									
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)					
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)					
0.9981	0.6836	1.4159	0.9957	0.6820	0.8845					
0.9938	0.9649	2.0024	0.9915	0.9626	1.2509					
0.9917	1.0756	2.2388	0.9893	1.0730	1.3985					
0.9906	1.1296	2.3480	0.9883	1.1269	1.4668					
0.9853	1.3590	2.8318	0.9829	1.3557	1.7690					
	m=	2.09671		m=	1.31292					
QSTD	b=	-0.01852	QA	b=	-0.01157					
	r=	0.99999		r=	0.99999					

Calculations								
Vstd= ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va= ΔVol((Pa-ΔP)/Pa)							
Qstd= Vstd/ΔTime	Qa= Va/ΔTime							
For subsequent flow rate calculations:								
Qstd= $1/m \left(\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)} \right) - b$	$Qa = 1/m \left(\left(\sqrt{\Delta H \left(Ta/Pa \right)} \right) - b \right)$							

Standard Conditions							
Tstd:	Tstd: 298.15 °K						
Pstd:	760 mm Hg						
	Key						
ΔH: calibrator manometer reading (in H2O)							
	ter manometer reading (mm Hg)						
	osolute temperature (°K)						
Pa: actual ba	arometric pressure (mm Hg)						
b: intercept							
m: slope	m: slope						

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Equipment Verification Report (TSP)

Equipment Calibrated:

Type: Laser Dust monitor

Manufacturer: Met One Aerocet 831

Serial No. E11304

Equipment Ref: NA

Work Order: HK2505219

Standard Equipment:

Standard Equipment: Higher Volume Sampler (TSP)

Location & Location ID: AUES office (calibration room)

Equipment Ref: HVS 018

Last Calibration Date: 12 February 2025

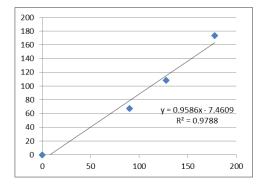
Equipment Verification Results:

Verification Date: 17 February 2025

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in ug/m³ (Standard Equipment)	Concentration in ug/m³ (Calibrated Equipment)	Tolerance (ug/m³)
1hr00min	09:31 ~ 10:31	18.9	1020.6	173.7	178.0	+4.3
1hr00min	11:49 ~ 12:49	18.9	1020.6	108.1	127.6	+19.5
1hr00min	14:05 ~ 15:05	18.9	1020.6	67.5	89.9	+22.4

Linear Regression of Y or X

Slope (factor): <u>0.9586 (µg/m3)/CPM</u>


Correlation Coefficient (R) 0.9893

Date of Issue 20 February 2025

Remarks:

- 1. **Strong** Correlation (R>0.8)
- 2. Factor $0.9586 \,(\mu g/m^3)$ /CPM should be applied for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Operator : _____ Date : ____ Date : ____ 20 February 2025

QC Reviewer : Ben Tam Signature : Date : 20 February 2025

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 12-Feb-25
Location ID: Calibration Room - TISCH Higher Volume Sampler (Model Next Calibration Date: 12-May-25

TE-5170) S/N:1260

CONDITIONS

Sea Level Pressure (hPa)1017.2Corrected Pressure (mm Hg)762.9Temperature (°C)18.8Temperature (K)292

CALIBRATION ORIFICE

Make->	TISCH	Qstd Slope ->	2.09671
Model->	5025A	Qstd Intercept ->	-0.01852
Calibration Date->	16-Dec-24	Expiry Date->	16-Dec-25

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.6	5.6	11.2	1.625	55	55.69	Slope = 35.3445
13	4.5	4.5	9.0	1.458	48	48.60	Intercept = -2.1779
10	3.4	3.4	6.8	1.268	42	42.52	Corr. coeff. = 0.9989
8	2.3	2.3	4.6	1.045	35	35.44	
5	1.2	1.2	2.4	0.757	24	24.30	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

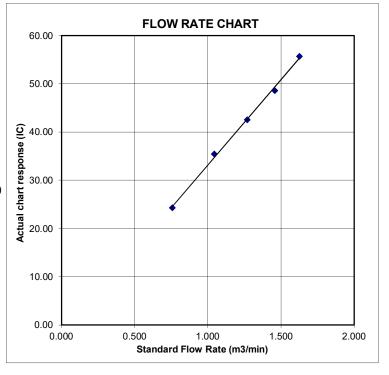
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

東恒測試顧問有限公司 **AQUALITY TESTCONSULT LIMITED**

香港新界粉嶺坪輋路啟芳園11A&B號

TEL: 852-2674-0478 FAX: 852-2674-1177

EMAIL: main.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

NO.11A&B, KAI FONG GARDEN, PING CHE ROAD, FANLING, N.T., HONG KONG

CERTIFICATE OF CALIBRATION

Ka Shing Facility Management Ltd.	Test Report No.	250512MCA-1P
Elet C 14/E ling He Industrial Duilding 79	Date of Issue	12-May-25
Flat C, 14/F, Jing Ho Industrical Building, 78-	Date of Testing	11-May-25
84 Wang Lung Street, Tsuen Wan, N.T.	Page	1 of 1

Item for Calibration

Description

: Laser Dust Monitor

Manufacturer

: Met One Instruments, Inc.

Model No.

: AEROCET-831

Serial No.

: D12641

Standard Equipment

Description

: High Volume Sampler / Calibration Orifice

Manufacturer

: Tisch Environmental, Inc.

Model No.

: TE-5170 / TE-5025A 3476 / 4088

Serial No. Last Calibration

: 24-AUG-24 / 15-OCT-24

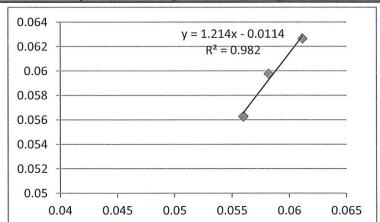
Date			Mean	Concentration	Concentration
	Time	Mean Temp	= ===	Standard	Calibrated
			Pressure	Equipment	Equipment
		(°C)	(hPa)	(mg/m3)	(mg/m3)
11-May-25	19:00	24.8	1010.1	0.0612	0.0627
11-May-25	20:05	24.8	1010.1	0.0560	0.0563
11-May-25	21:10	24.8	1010.1	0.0582	0.0598

By Linear Regression of Y or X

Slope

1.2140

Correlation Coefficient:


0.9820

K-Factor

0.9817

Validity of Calibration:

10-May-26

Recorded by

Jessica Liu

Signature:

Date: 11-May-25

Checked by

S Tang

Signature:

Date: 11-May-25

RECALIBRATION **DUE DATE:**

October 15, 2025

Calibration Certification Information

Cal. Date: October 15, 2024

Rootsmeter S/N: 438320

Ta: 294 Pa: 752.1 °K

Operator:

Jim Tisch

mm Hg

Calibration Model #:

TE-5025A

Calibrator S/N: 4088

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4330	3.2	2.00
2	3	4	1	1.0260	6.4	4.00
3	5	6	1	0.9190	7.9	5.00
4	7	8	1	0.8740	8.8	5.50
5	9	10	1	0.7230	12.7	8.00

	Data Tabulation				
Vstd	Qstd	$\sqrt{\Delta H(\frac{Pa}{Pstd})(\frac{Tstd}{Ta})}$		Qa	√∆H(Ta/Pa)
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)
0.9988	0.6970	1.4164	0.9957	0.6949	0.8842
0.9945	0.9693	2.0031	0.9915	0.9664	1.2505
0.9925	1.0800	2.2395	0.9895	1.0767	1.3980
0.9913	1.1342	2.3488	0.9883	1.1308	1.4663
0.9861	1.3639	2.8328	0.9831	1.3598	1.7684
	m=	2.12356		m=	1.32974
QSTD	b=	-0.05931	QA	b=	-0.03702
	r=	0.99996		r=	0.99996

	Calculatio	ns	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd=	Vstd/ΔTime	Qa=	Va/ΔTime
	For subsequent flow ra	te calculatio	ns:
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$

	Standard	Conditions
Tstd:	298.15	
Pstd:	760	mm Hg
		Key
ΔH: calibrato	r manome	ter reading (in H2O)
	and the second s	eter reading (mm Hg)
Ta: actual ab		
	rometric p	ressure (mm Hg)
b: intercept		
m: slope		

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc.

145 South Miami Avenue

Village of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

Room 2103, Technology Plaza, 29-35 Sha Tsui Road, Tsuen Wan, NT, Hong Kong

+852 25680106 Email: info@callab.com.hk +852 30116194

Website: www.callab.com.hk

Calibration Certificate No.: CC0072503

Information provided by customer

Customer: Ka Shing Facility Management Ltd

Unit 2, 13/F, Kai Yue Commercial Building, 2C Argyle St, Mong Kok, Kowloon Address:

Equipment Identification provided by customer

Equipment Description Manufacturer Model No. Serial No. Assigned equipment No. N/A

Aerosol Mass Monitor Met One Instrument **AEROCET 831** D12641

Certificate Information

Calibration Condition: 22.8°C, 57%RH, 1006hPa Date of Receipt: 5 March 2025

Date of Calibration: 13 March 2025 Adjustment: N/A Recommended Next Cal. Date: Appearance: Good N/A

Calibration Procedure: ISO 21501-4:2018 Remark: N/A

Reference Equipment Identification

Equipment Description Model Serial No. **Expiration Date Aerosol Monitor** 8534 8534182605 6 December 2026

Result of Calibration

Indication

Dust	Reference Setting (mg/m³)	Measured reading (mg/m³)	Error (%)	Uncertainty (%FS)	Technical Requirement	Technical Reference Doc.
TSP	0.099	0.0964	-2.6	14.0	± 10%	Mfr's Spec.
TSP	0.202	0.1951	-3.4	14.0	± 10%	Mfr's Spec.
TSP	0.300	0.2923	-2.6	14.0	± 10%	Mfr's Spec.

CT-GAS-01

The estimated expanded uncertainties have been calculated in "Evaluation and expression of uncertainty in measurement" and give an internal estimated to have a level Note1: of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Note2: The standard (s) and instrument used in the calibration are traceable to national or international recognized standard and are calibrated on a schedule to maintain the accuracy and good condition.

The result reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long term stability of the Note3:

The result shows in this calibration certificate relate only to the item calibrated, and the result only applies to the calibration item as received.

Calibration item/ parameter marked with * is out of scope of Cal Lab Limited (A2LA 3815.01). Note5:

Calibrated By:

Checked and Approved By:

Company Chop:

Wing Cheng

Warren Yeung

Certificate Issue Date: 19 March 2025

CT-BEG-04

*** End of Certificate ***

1. The certificate shall not be reproduced except in full, without written approval of Cal Lab Limited

2. The certificate is issued subject to the latest Terms and Conditions, available at our web site

CC0072503

Room 2103, Technology Plaza, 29-35 Sha Tsui Road,

Tsuen Wan, NT, Hong Kong

Email: info@callab.com.hk +852 25680106 +852 30116194 Website: www.callab.com.hk Fav.

Calibration Certificate No.: CC0782503

Information provided by customer

Customer:

Cal Lab Limited

Address:

Room 2103, Technology Plaza, 29-35 Sha Tsui Road, Tsuen Wan, NT, Hong Kong

Equipment Identification provided by customer

-4	P			
Equipment Description	Manufacturer	Model No.	Serial No.	Assigned equipment No.
High Volume Sampler	Qingdao Hengyuan	HY-1000E	1406071	N/A

Certificate Information

Date of Receipt:

18 March 2025

Calibration Condition:

24.1°C, 52%RH, 1004hPa

Date of Calibration:

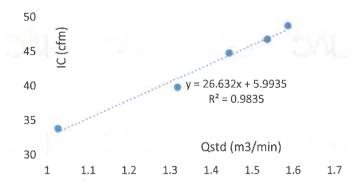
18 March 2025 N/A

Adjustment: Appearance: N/A

Recommended Next Cal. Date: Calibration Procedure:

Performance check

Remark:


Good N/A

Reference Equipment Identification

Equipment Description	Model	Serial No.	Expiration Date
Calibration Orifices	TE-5025	4088	15 October 2025

Result of Calibration

ico: oansia				- V
Test	H ₂ O (in)	Q _{std} (m³/min)	I (chart)	IC (corrected)
1	5.0	1.586	49.0	48.76
2	4.5	1.536	47.0	46.77
3	4.0	1.443	45.0	44.78
4	3.5	1.318	40.0	39.80
5	2.5	1.025	34.0	33.83

The estimated expanded uncertainties have been calculated in "Evaluation and expression of uncertainty in measurement" and give an internal estimated to have a level Note1: of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

The standard (s) and instrument used in the calibration are traceable to national or international recognized standard and are calibrated on a schedule to maintain the Note2: accuracy and good condition.

The result reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long term stability of the Note3: instrument.

The result shows in this calibration certificate relate only to the item calibrated, and the result only applies to the calibration item as received. Note4

Note5: Calibration item/ parameter marked with * is out of scope of Cal Lab Limited (A2LA 3815.01).

Calibrated By:

Checked and Approved By:

Company Chop:

Wing Cheng

Certificate Issue Date: 19 March 2025

CT-BEG-04

*** End of Certificate ***

- 1. The certificate shall not be reproduced except in full, without written approval of Cal Lab Limited
- 2. The certificate is issued subject to the latest Terms and Conditions, available at our web site

CC0782503

Room 2103, Technology Plaza, 29-35 Sha Tsui Road, Tsuen Wan, NT, Hong Kong

Tel: +852 25680106 Email: info@callab.com.hk
Fax: +852 30116194 Website: www.callab.com.hk

Appendix of CC0782503

Calibration Certificate of Calibration Orifices

RECALIBRATION DUE DATE:

October 15, 2025

Certificate of Calibration

Run	Val. Init (m3)	Vot. Final (m3)	ΔVol (m3)	āTīme (min)	ΔP (mm Hg)	(in H2O)
1.1	1	2	1	1 4330	3.2	2.00
2	3	4	1	1.0260	5.4	4.00
- 3	5	6	1	0.9190	7.9	5:00
4	7	8	1	0.8740	8.8	5.50
5	9	10	1	0.7230	12.7	8.00

		Data Tabulat	ion		
Vstd (m3)	Qstd (x-axis)	√∆H(Pad (Tstd) (y-axis)	Va	Qa (x-axis)	√∆H(Ta/Pa)
0.9988	0.6970	1.4164	0.9957	0.6949	0.8842
0.9945	0.9693	2.0031	0.9915	0.9664	1.2505
0.9925	1.0800	2.2395	0.9895	1.0767	1.3980
0.9913	1.1342	2.3488	0.9883	1.1308	1.4663
0.9861	1.3639	2.8328	0.9831	1.3598	1.7684
	m=	2.12356		m=	1.32974
QSTD	b=	0.05931	QA	b-	0.03702
	1=	0.99996		(=	0.99996

Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVoi((Pa-ΔP)/Pa)
Qstd=	Vstd/&Time	Qa-	Va/ATime
	For subsequent flow rat	e calculatio	ns:
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd},\left(\frac{Tstd}{Ta}\right)\right)}\right)b\right)$		1/m ([[] AH (Ta/Pa)] b

Standard Conditions
298 15 °K
760 mm Hg
Key
manometer reading (in H2O)
er manometer reading (mm Hg)
olute temperature ("K)
ometric pressure (mm Hg)

RECALIBRATION

US EPA recommends annual recalibration per 1998
40 Code of Federal Regulations Part 50 to S1,
Appendix 8 to Part 50, Reference Method for the
Determination of Suspended Particulate Matter in
the Atmosphere, 9 2-17, page 30

isch Environmental, Inc. 45 South Miami Avenue illage of Cleves, OH 45002 www.tisch-env.com

TOLL FREE (877)263-7610 FAX: (513)467 9009

*** End of Appendix ***

- 1. The certificate shall not be reproduced except in full, without written approval of Cal Lab Limited
- 2. The certificate is issued subject to the latest Terms and Conditions, available at our web site

Room 2103, Technology Plaza, 29-35 Sha Tsui Road,

Tsuen Wan, NT, Hong Kong

+852 25680106 Email: info@callab.com.hk Tel: Fax: +852 30116194 Website: www.callab.com.hk

Calibration Certificate No.: CC0792503

Information provided by customer

Customer: Ka Shing Facility Management Ltd

Address: Unit 2, 13/F, Kai Yue Commercial Building, 2C Argyle St, Mong Kok, Kowloon

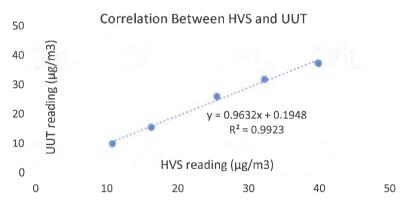
Equipment Identification provided by customer

Equipment Description Manufacturer Model No. Serial No. Assigned equipment No. Aerosol Mass Monitor D12641 Met One Instrument **AEROCET 831** N/A

Certificate Information

Date of Receipt: 5 March 2025 Calibration Condition: 23.2°C, 48%RH, 1004hPa

Date of Calibration: 19 March 2025 Adjustment: N/A Recommended Next Cal. Date: N/A Appearance: Good Calibration Procedure: Remark: In-House Method N/A


Reference Equipment Identification

Equipment Description	Model	Serial No.	Expiration Date	
High Volume Sampler	HY-1000E	1406071	17 March 2026	

Result of Calibration

Indication

Trial	1	2	3	4	5
Equipment	Measuremet result (μg/m3)				
High Volume Sampler (HVS)	39.8	32.2	25.4	16.2	10.7
Unit Under Test (UUT)	37.4	31.9	26.0	15.5	9.9

Note1: The estimated expanded uncertainties have been calculated in "Evaluation and expression of uncertainty in measurement" and give an internal estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Note2: The standard (s) and instrument used in the calibration are traceable to national or international recognized standard and are calibrated on a schedule to maintain the accuracy and good condition.

The result reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long term stability of the Note3:

The result shows in this calibration certificate relate only to the item calibrated, and the result only applies to the calibration item as received. Note4:

Note5: Calibration item/ parameter marked with * is out of scope of Cal Lab Limited (A2LA 3815.01).

Calibrated By:

Checked and Approved By:

Company Chop:

Wing Cheng

Certificate Issue Date: 19 March 2025

CT-BEG-04

*** End of Certificate ***

1. The certificate shall not be reproduced except in full, without written approval of Cal Lab Limited

2. The certificate is issued subject to the latest Terms and Conditions, available at our web site

CC0792503

東恒測試顧問有限公司 AQUALITY TESTCONSULT LIMITED 香港新界粉嶺坪輋路啟芳園11A&B號

TEL: 852-2674-0478 FAX: 852-2674-1177

EMAIL: main.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

NO.11A&B, KAI FONG GARDEN, PING CHE ROAD, FANLING, N.T., HONG KONG

CERTIFICATE OF CALIBRATION

Report Number : 250315MCA-1P

Date of Report : 15-Mar-25 Page Number : 1 of 2

Customer * : Ka Shing Facility Management Ltd.

Customer Address* : Flat C, 14/F, Jing Ho Industrical Building, 78-84 Wang Lung Street, Tsuen Wan, N.T.

Customers Ref. * : K194

Item Under Calibration (IUC)*

Equipment No. : 224534

Manufacturer : Met One Instruments, Inc.

Model No. : AEROCET-831

Serial No. : E11304

Scale Division : 0.001 mg/m3 Range : 0.001 to 1 mg/m3

Condition of Item : Normal

Date Item Received : 14-Mar-25 Date Calibrated : 14-Mar-25

Calibration Location : AQuality Calibration Lab.

Date of Next Calibration : 13-Mar-26 Calibrated By : Jessica Liu

Test Environment

Ambient Temperature : 20.1 °C to 23.5 °C Relative Humidity : 70 % to 75 %

Calibration Results

	Reference True Reading (mg/m³)	Average IUC Reading (mg/m ³)	Correction (mg/m³)	Error of IUC Reading (%)	Coverage Factor K
Ì	0.215	0.226	0.011	4.9%	2.0
	0.481	0.491	0.010	2.1%	2.0
	0.830	0.837	0.007	0.9%	2.0

Remarks

- 1. * Denotes information supplied by customer.
- 2. The results relate only to the items calibrated.
- 3. The results apply to the items as received.
- 4. Correction = Average of (Ref reading IUC reading)
- 5. The technical requirement of laser dust meter. +/- 20% error for the particles concentration.

Approved by:

LEE Mei Yee, Julia Managing Director

東恒測試顧問有限公司 AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&B號

TEL: 852-2674-0478 FAX: 852-2674-1177

EMAIL: main.aqtl@gmail.com WEBSITE: www.aqtlgroup.com

NO.11A&B, KAI FONG GARDEN, PING CHE ROAD, FANLING, N.T., HONG KONG

CERTIFICATE OF CALIBRATION

Report Number

: 250315MCA-1P

Date of Report

: 15-Mar-25

Page Number

: 2 of 2

Customer *

: Ka Shing Facility Management Ltd.

Customers Ref. *

: K194

Details of Calibration

- 1. The calibration was performed in accordance with AQuality Testconsult Procedure Number ENV-L-003 (in-house method), by comparison with the laboratory's reference equipment which have traceable international standards of measurement.
- 2. The item under calibration (IUC) was allowed to stabilize in the laboratory for 0.25 hour before commencement of calibration.
- 3. A set of readings were made at each calibration concentration. The values quoted in the results are the average of each set of readings.
- 4. The values given in this calibration certificate only relate to the values measured at the time of calibration. Any uncertainties quoted do not include allowance for the capability of any other laboratory to repeat the measurement. The uncertainty quoted relate only to item at time of calibration. AQuality Testconsult Limited is not liable for any loss or damage resulting from the use of this equipment.
- 5. The identification, calibration certificate numbers for the reference equipment used were as follows:

Equipment Number	Certificate Number	Description
CH-LDM-1	CC1592412	粉尘测试仪

6. Copies of the Calibration certificates of the reference equipment used in this calibration may be obtained from AQuality Testconsult Limited, if necessary.

- End of Report -

東恒測試顧問有限公司

AQUALITY TESTCONSULT LIMITED

香港新界粉嶺坪輋路啟芳園11A&11B號

TEL: 852-3582-9589 FAX: 852-2674-1177 EMAIL: cal.aqtl@gmail.com

WEBSITE: www.aqtlgroup.com

CERTIFICATE OF CALIBRATION

No. 11A&11B, KAI FONG GARDEN, PING CHE ROAD, FANLING, N.T., HONG KONG

Ka Shing Facility Management Ltd.	Test Report No.	250315MCA-1P
Elet C. 14/E. Ling He Industried Duilding 70	Date of Issue	15-Mar-25
Flat C, 14/F, Jing Ho Industrical Building, 78 4 Wang Lung Street, Tsuen Wan, N.T.	Date of Testing	14-Mar-25
	Page	1 of 1

Item for Calibration

Description : Laser Dust Monitor

: Met One Instruments, Inc. Manufacturer

Model No. : AEROCET-831

Serial No. : E11304

Standard Equipment

Description : High Volume Sampler / Calibration Orifice

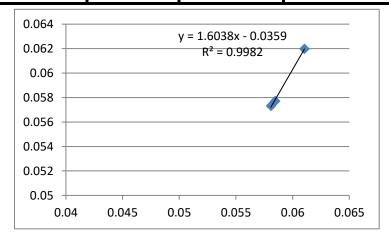
Manufacturer : Tisch Environmental, Inc.

Model No. : TE-5170 / TE-5025A

Serial No. 3476 / 4088

24-AUG-24 / 15-OCT-24 Last Calibration

	Mean		Concentration	Concentration	
Data	Time	Mean Temp	Pressure	Standard	Calibrated
Date	Time		Flessule	Equipment	Equipment
		(°C)	(hPa)	(mg/m3)	(mg/m3)
14-Mar-25	19:00	20.5	1014.4	0.0610	0.0620
14-Mar-25	20:05	20.5	1014.4	0.0581	0.0573
14-Mar-25	21:10	20.5	1014.4	0.0585	0.0577


By Linear Regression of Y or X

Slope 1.6038

Correlation Coefficient: 0.9982

K-Factor 1.0037

Validity of Calibration: 13-Mar-26

Recorded by Jessica Liu Signature: Date: 14-Mar-25

Checked by S Tang Signature: Date: 14-Mar-25

RECALIBRATION **DUE DATE:**

October 15, 2025

Calibration Certification Information

Cal. Date: October 15, 2024

Rootsmeter S/N: 438320

Ta: 294 Pa: 752.1 °K

Operator:

Jim Tisch

mm Hg

Calibration Model #:

TE-5025A

Calibrator S/N: 4088

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4330	3.2	2.00
2	3	4	1	1.0260	6.4	4.00
3	5	6	1	0.9190	7.9	5.00
4	7	8	1	0.8740	8.8	5.50
5	9	10	1	0.7230	12.7	8.00

	Data Tabulation					
Vstd	Qstd	$\sqrt{\Delta H(\frac{Pa}{Pstd})(\frac{Tstd}{Ta})}$		Qa	√∆H(Ta/Pa)	
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)	
0.9988	0.6970	1.4164	0.9957	0.6949	0.8842	
0.9945	0.9693	2.0031	0.9915	0.9664	1.2505	
0.9925	1.0800	2.2395	0.9895	1.0767	1.3980	
0.9913	1.1342	2.3488	0.9883	1.1308	1.4663	
0.9861	1.3639	2.8328	0.9831	1.3598	1.7684	
	m=	2.12356		m=	1.32974	
QSTD	b=	-0.05931	QA	b=	-0.03702	
40.0	r=	0.99996		r=	0.99996	

Calculations					
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)		
Qstd= Vstd/ΔTime		Qa=	Va/ΔTime		
For subsequent flow rate calculations:					
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$		

Standard Conditions						
Tstd:	298.15					
Pstd:	760	mm Hg				
		Key				
ΔH: calibrato	ΔH: calibrator manometer reading (in H2O)					
ΔP: rootsmeter manometer reading (mm Hg)						
Ta: actual absolute temperature (°K)						
Pa: actual barometric pressure (mm Hg)						
b: intercept						
m: slope						

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc.

145 South Miami Avenue

Village of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

FAQ / Information

Mutual Recognition Arrangements (MRA) / Multilateral Recognition Arrangements (MLA)

Mutual Recognition Arrangement (MRA) Partners for HOKLAS ^

Every effort is made to promote acceptance of test data from accredited laboratories, both internationally and locally. HKAS has concluded mutual recognition arrangements with accreditation bodies listed below by being one of the signatories of the International Laboratory Accreditation Cooperation Mutual Recognition Arrangement (ILAC MRA) and the Asia Pacific Accreditation Cooperation Mutual Recognition Arrangement (APAC MRA) for testing, calibration, medical testing, Proficiency Testing Providers (PTP) and Reference Material Producers (RMP). Click here to view the up-to-date signatories of ILAC and here to access the up-to-date signatories of APAC.

Visitors checking the names, logos and accreditation symbols shown on an endorsed certificate or report should note that some of our MRA partners may have their names, logos or accreditation symbols changed recently and test reports or certificates endorsed by displaying their old accreditation symbols may still be valid during the change-over period. For details, please visit their websites or contact them directly.

» Mutual Recognition Arrangement (MRA) Partners for HOKLAS

HKAS MRA partners will recognise HOKLAS endorsed test certificates as having the same technical validity as certificates endorsed by their respective schemes.

Multilateral Recognition Arrangements (MLA) for HKCAS >

Mutual Recognition Arrangement (MRA) Partners for HKIAS >

Hong Kong Laboratory Accreditation Scheme (HOKLAS) - Mutual Recognition Arrangement (MRA) Partners

Economy	Logo	Name of Partner	URL	Test Area
United Kingdom of Great Britain and Northern Ireland	UKAS UNKAS United Pringstom Acer Pringstom Service	United Kingdom Accreditation Service (UKAS)	http://www.ukas.com	Calibration, Medical Testing, Non-medical Testing, Proficiency Testing Provider, Reference Material Producer
United States of America		AIHA Laboratory Accreditation Programs, LLC (AIHA-LAP, LLC)	http://www.aihaaccreditedla bs.org/	Non-medical Testing
United States of America		American Association for Laboratory Accreditation (A2LA)	http://www.a2la.org	Calibration, Medical Testing, Non-medical Testing, Proficiency Testing Provider, Reference Material Producer
United States of America		ANSI National Accreditation Board (ANAB)	http://www.anab.org/	Calibration, Medical Testing, Non-medical Testing, Proficiency Testing Provider, Reference Material Producer
United States of America	IAS INTERNATIONAL ACCREDITATION SERVICE	International Accreditation Service Inc. (IAS)	http://www.iasonline.org/	Calibration, Medical Testing, Non-medical Testing
United States of America		National Accreditation Center LLC (NAC)		Calibration, Non-medical Testing
United States of America	"qalvn	National Voluntary Laboratory Accreditation Program (NVLAP)	http://www.nist.gov/nvlap	Calibration, Non-medical Testing

14 April 2025 17 / 18

CERTIFICATE OF ACCREDITATION

This is to attest that

AQUALITY TESTCONSULT LIMITED

11A&B, KAI FONG GARDEN, PING CHE ROAD FANLING, HONG KONG

Calibration Laboratory CL-207

has met the requirements of AC204, *IAS Accreditation Criteria for Calibration Laboratories*, and has demonstrated compliance with ISO/IEC Standard 17025:2017, *General requirements for the competence of testing and calibration laboratories*. This organization is accredited to provide the services specified in the scope of accreditation.

Effective Date February 19, 2024

President

SCOPE OF ACCREDITATION

International Accreditation Service, Inc.

3060 Saturn Street, Suite 100, Brea, California 92821, U.S.A. | www.iasonline.org

MEASURED QUANTITY or DEVICE TYPE CALIBRATED	RANGE	UNCERTAINTY ^{1,2} (±)	CALIBRATION PROCEDURE AND/OR STANDARD EQUIPMENT USED
			dimensional requirements as specified in BS 1881- Part 105: 1984)
Test Sieve ³	4 mm to 50 mm	50 μm	Reference Caliper by direct measurement as per BS 410 : 1986
Elongation Gauge ³	Gap between Pins of Gauge 10 mm to 100 mm	0.29 mm	Reference Caliper by direct measurement (Verification in accordance with in-house method for the dimensional requirements as specified in BS 812- Part 1:1975; BS 812- Part 105.2: 1990)
Flakiness Gauge ³	Length of Slot of Gauge 4.9 mm to 33.9 mm	0.06 mm	Reference Caliper by direct measurement ((Verification in accordance with in-house method for the dimensional requirements as specified in BS 812- Part 1:1975; BS 812- Part105.1:1985; BS 812- Part105.1:1989)
Riffle Box ³	Width 6 mm to 100 mm	0.06 mm	Reference Caliper by direct measurement (Verification in accordance with in-house method for the dimensional requirements as specified in BS 812- Part 1:1975)
	Mechani	cal	
Force Measuring Machine ³ (Compression Mode)	1 kN to 3000 kN	0.4 %	Reference Load cell by direct measurement (Based on BS 1610: Part 1:1985; BS 1610: Part 1:1992; BS EN ISO 12390- 4:2000 Annex B; BS EN 12390-4: 2019; BS EN ISO 7500-1:2004, BS EN ISO 7500-1: 2015, BS EN ISO 7500-1: 2018)
Laser Dust _, Meter³)	Dust particles 0.1 mg/m³ to 3 mg/m³ 3 mg/m³ to 8 mg/m³	0.006 mg/m ³ 0.39 mg/m ³	By comparison method by using reference laser dust meter (Based on ISO 12103-1:2016)
Rebound Hammer ³	80 unit (hardness)	1.6 rebound count	Reference Rebound count by comparison method (Based on BS1881: Part 202:1986; BS EN 12504-2:2001; BS EN

Certificate of Calibration

Certificate No. ATS24-112-CC001

Customer:

Ka Shing Facilities Management Limited

Flat C, 14/F., Jing Ho Industrial Building, 78-84 Wing Lung Street, Tsuen Wan,

N.T., Hong Kong

Unit-under-test (UUT):

Description:

Sound Calibrator

Manufacturer:

SoundTEK

Type No.:

ST-120

Serial No.:

210102628

Conditions during calibration:

Temperature:

25°C

Relative Humidity:

50%

Test Specifications:

Calibration Check

Date of Calibration:

11 November 2024

Test Results:

All calibration points are within manufacturer's specification.

Certified by:

Mr. Ching Mau LAM / Quality Manager

MIOA, MHKIOA

Issue Date: 11 November 2024

Certificate No.: ATS24-112-CC001

1. The instrument under test was allowed to stabilize in the laboratory for over 24 hours.

2. Calibration equipment:

Description:

Sound Analyzer

Reference Microphone

Manufacturer:

Brüel & Kjær

Brüel & Kjær

Type No.:

2270

4189

Serial No.:

3001883

2662797

Last Calibration Date:

14 March 2024

14 March 2024

Certificate No.:

AV240037

AV240037

The calibration equipment used for calibration is traceable to National Standards via Standards and Calibration Laboratory, the Government of the HKSAR.

The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted, if any, will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. Acoustic Testing Services Limited shall not be liable for any loss or damage resulting from the use of the equipment.

4. Calibration Results

Nominal value	Measured value	IEC 60942 Class 1 Tolerance Limits	Conclusion	Expanded Measurement Uncertainty of Reference Microphone B&K 4189 at 1000 Hz
dB	dB	dB		dB
94.00	93.82	± 0.25	PASS	0.20
114.0	113.76	± 0.25	PASS	0.20

All calibration points are within manufacturer's specification.

Certificate of Calibration

Certificate No. ATS25-008-CC001

Customer:

Ka Shing Facilities Management Limited

Flat C, 14/F., Jing Ho Industrial Building, 78-84 Wing Lung Street, Tsuen Wan,

N.T., Hong Kong

Unit-under-test (UUT):

Description:

Sound Analyzer

Microphone

Pre-amplifier

Manufacturer:

Rion

Type No.:

NL-53

UC-59

NH-25

Serial No.:

01130782

24906

33673

Conditions during calibration:

Temperature:

23°C

Relative Humidity:

65%

Test Specifications:

Calibration Check

Date of Calibration:

23 January 2025

Test Results:

All calibration points are within manufacturer's specification.

Certified by:

Mr. Ching Mau LAM / Quality Manager

MIOA, MHKIOA

Issue Date: 24 January 2025

Certificate No.: ATS25-008-CC001

1. The instrument under test was allowed to stabilize in the laboratory for over 24 hours.

2. Calibration equipment:

Description:

Sound Calibrator

Manufacturer & Type:

Brüel & Kjær 4231

Serial No.:

2478237

Last Calibration Date:

27 February 2024

Certificate No.:

AV240026

The calibration equipment used for calibration is traceable to National Standards via Standards and Calibration Laboratory, the Government of the HKSAR.

- 3. The Sound Analyzer has been calibrated in accordance with the requirements as specified in IEC 61672-1 Class 1, and vendor specific procedures.
- 4. The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted, if any, will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. Acoustic Testing Services Limited shall not be liable for any loss or damage resulting from the use of the equipment.

Calibration Results

S	Setting of unit-under-test (UUT)				Applied value		IEC 61672-1 Class 1	Conclusion
Range, dB	Parameter	Frequency Weighting	Response	Level, dB	Frequency, Hz	Reading, dB	Tolerance Limits, dB	Conclusion
			F			94.0	± 0.7	PASS
		Α	S		1000	94.0	± 0.7	PASS
			I	94.00		94.0	± 0.7	PASS
	o.P.I	C	F			94.0	± 0.7	PASS
			S			94.0	± 0.7	PASS
00.400			I			94.0	± 0.7	PASS
30-130	SPL		F			94.0	± 0.7	PASS
			S			94.0	± 0.7	PASS
			I			94.0	± 0.7	PASS
			F			114.0	± 0.7	PASS
		Α	S	114.00	1000	114.0	± 0.7	PASS
			I			114.0	± 0.7	PASS

Certificate No.: ATS25-008-CC001

E-mail: info@ATSL.com.hk

http://www.ATSL.com.hk

Certificate of Calibration

Fax: (852) 2690 9125

Certificate No. ATS25-008-CC002

Customer: Ka Shing Facility Management Limited

Flat C, 14/F., Jing Ho Industrial Building, 78-84 Wing Lung Street, Tsuen Wan,

N.T., Hong Kong

Unit-under-test (UUT):

Description: Sound Level Meter , Microphone , Pre-amplifier

Manufacturer: BSWA Technology

Tel: (852) 2690 9126

Type No.: BSWA 308 , 231 , MA231T

Serial No.: 610062 , 591574 , 610373

Conditions during calibration:

Temperature: 26°C

Relative Humidity: 58%

Test Specifications: Calibration Check

Date of calibration: 24 April 2025

Test Results: All calibration points are within manufacturer's specification.

Certified by:

Mr. Ching Mau LAM / Quality Manager

MIOA, MHKIOA

Issue Date: 24 April 2025

Certificate No.: ATS25-008-CC002

E-mail: info@ATSL.com.hk

http://www.ATSL.com.hk

1. The instrument under test was allowed to stabilize in the laboratory for over 24 hours.

Fax: (852) 2690 9125

2. Calibration equipment:

Description: Multifunction Acoustical Calibrator

Manufacturer & Type: Brüel & Kjær 4226

Serial No.: 2919264

Tel: (852) 2690 9126

Last Calibration Date: 11 September 2024
Certificate No.: 2GB24018355-0001

The calibration equipment used for calibration is traceable to National Standards via China Ceprei Laboratory Calibration & Testing Centre. The Multifunction Acoustical Calibrator Brüel & Kjær 4226 has been accredited calibrated by other laboratory and it is found that it cannot fulfill the tolerance limits for frequency at 2000 Hz only, since the Brüel & Kjær 4226 is designed for old year version of IEC 60942 (or JJG 176), but the tolerance limits for frequency as well as sound pressure level, are updated in the most updated version of standards. However, it can still fulfill the requirements for sound pressure level from 31.5 Hz to 8000 Hz.

- 3. The Sound Analyzer has been calibrated in accordance with the requirements as specified in IEC 61672-1 Class 1, and vendor specific procedures.
- 4. The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted, if any, will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. Acoustic Testing Services Limited shall not be liable for any loss or damage resulting from the use of the equipment.

- 5. Calibration Results
- 5.1 Sound Pressure Level

Reference Sound Pressure Level

Setting of unit-under-test (UUT)		Applied value		UUT	IEC 61672-1 Class 1			
Range, dB	Parameter	Time Weighting	Level, dB	Frequency, Hz	Reading, dB	Tolerance Limits, dB	Conclusion	
22-136	dBA SPL	Fast	94.0	1000	94.0	± 0.7	PASS	

Linearity

Setting of unit-under-test (UUT)		Applied value		UUT	IEC 61672-1 Class 1			
Range, dB	Parameter	Time Weighting	Level, dB	Frequency, Hz	Reading, dB	Tolerance Limits, dB	Conclusion	
	dBA SPL	1,9	94.0	1000	94.0	± 0.7	PASS	
22-136		Fast	104.0		104.0	± 0.7	PASS	
			114.0		114.0	± 0.7	PASS	

Time Weighting

Setting of unit-under-test (UUT)		Applied value		UUT	IEC 61672-1 Class 1			
Range, dB	Parameter	Time Weighting	Level, dB	Frequency, Hz	Reading, dB	Tolerance Limits, dB	Conclusion	
22.426	dBA SPL	Fast	94.0	1000	94.0	± 0.7	PASS	
22-136		Slow	94.0		94.0	± 0.7	PASS	

Frequency Response

A-weighting:

Setting of	unit-under-test (UUT)		Applied value		UUT Reading,	IEC 61672-1 Class 1	
Range, dB	Parameter	Time Weighting	Level, dB	Frequency, Hz	dB	Tolerance Limits, dB	Conclusion
			54.6	31.5	54.7	± 1.5	PASS
	SPL	Fast	67.8	63	67.9	± 1.0	PASS
			77.9	125	77.9	± 1.0	PASS
			85.4	250	85.4	± 1.0	PASS
22-136			90.8	500	90.8	± 1.0	PASS
			94.0	1000	94.0	± 0.7	PASS
			95.2	2000	95.0	± 1.0	PASS
			95.0	4000	94.1	± 1.0	PASS
			92.9	8000	90.4	+1.5; -2.5	PASS

C-weighting:

Setting of	unit-under-t	est (UUT)	Applied value		UUT Reading,	IEC 61672-1 Class 1	
Range, dB	Parameter	Time Weighting	Level, dB	Frequency, Hz	dB	Tolerance Limits, dB	Conclusion
	17	/	91.0	31.5	91.1	± 1.5	PASS
		0	93.2	63	93.3	± 1.0	PASS
			93.8	125	93.9	± 1.0	PASS
			94.0	250	94.0	± 1.0	PASS
22-136	SPL	Fast	94.0	500	94.0	± 1.0 P	PASS
		500	94.0	1000	94.0	± 0.7	PASS
	1		93.8	2000	93.6	± 1.0	PASS
			93.2	4000	92.4	± 1.0	PASS
			91.0	8000	88.5	+1.5; -2.5	PASS

Linear:

Setting of unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672-1 Class 1	
Range, dB	Parameter	Time Weighting	Level, dB	Frequency, Hz	dB	Tolerance Limits, dB	Conclusion
				31.5	94.2	± 1.5	PASS
	SPL	Fast	94.0	63	94.1	± 1.0	PASS
				125	94.0	± 1.0	PASS
				250	94.0	± 1.0	PASS
22-136				500	94.0	± 1.0	PASS
				1000	94.0	± 0.7	PASS
				2000	93.8	± 1.0	PASS
				4000	93.2	± 1.0	PASS
				8000	91.8	+1.5; -2.5	PASS

All calibration points are within manufacturer's specification.

